An improved algorithm for neural network classification of imbalanced training sets

نویسندگان

  • Rangachari Anand
  • Kishan G. Mehrotra
  • Chilukuri K. Mohan
  • Sanjay Ranka
چکیده

The backpropagation algorithm converges very slowly for two-class problems in which most of the exemplars belong to one dominant class. An analysis shows that this occurs because the computed net error gradient vector is dominated by the bigger class so much that the net error for the exemplars in the smaller class increases significantly in the initial iteration. The subsequent rate of convergence of the net error is very low. A modified technique for calculating a direction in weight-space which decreases the error for each class is presented. Using this algorithm, the rate of learning for two-class classification problems is accelerated by an order of magnitude.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Improved Fuzzy Neural Network for Solving Uncertainty in Pattern Classification and Identification

Dealing with uncertainty is one of the most critical problems in complicatedpattern recognition subjects. In this paper, we modify the structure of a useful UnsupervisedFuzzy Neural Network (UFNN) of Kwan and Cai, and compose a new FNN with 6 types offuzzy neurons and its associated self organizing supervised learning algorithm. Thisimproved five-layer feed forward Supervised Fuzzy Neural Netwo...

متن کامل

Cystoscopic Image Classification Based on Combining MLP and GA

In the past three decades, the use of smart methods in medical diagnostic systems has attracted the attention of many researchers. However, no smart activity has been provided in the field of medical image processing for diagnosis of bladder cancer through cystoscopy images despite the high prevalence in the world. In this paper, a multilayer neural network was applied to clas...

متن کامل

Prediction of mechanical and fresh properties of self-consolidating concrete (SCC) using multi-objective genetic algorithm (MOGA)

Compressive strength and concrete slump are the most important required parameters for design, depending on many factors such as concrete mix design, concrete material, experimental cases, tester skills, experimental errors etc. Since many of these factors are unknown, and no specific and relatively accurate formulation can be found for strength and slump, therefore, the concrete properties ca...

متن کامل

Learning Classifiers from Imbalanced, Only Positive and Unlabeled Data Sets

In this report, I presented my results to the tasks of 2008 UC San Diego Data Mining Contest. This contest consists of two classification tasks based on data from scientific experiment. The first task is a binary classification task which is to maximize accuracy of classification on an evenly-distributed test data set, given a fully labeled imbalanced training data set. The second task is also ...

متن کامل

Classification of ECG signals using Hermite functions and MLP neural networks

Classification of heart arrhythmia is an important step in developing devices for monitoring the health of individuals. This paper proposes a three module system for classification of electrocardiogram (ECG) beats. These modules are: denoising module, feature extraction module and a classification module. In the first module the stationary wavelet transform (SWF) is used for noise reduction of ...

متن کامل

Accurate Fault Classification of Transmission Line Using Wavelet Transform and Probabilistic Neural Network

Fault classification in distance protection of transmission lines, with considering the wide variation in the fault operating conditions, has been very challenging task. This paper presents a probabilistic neural network (PNN) and new feature selection technique for fault classification in transmission lines. Initially, wavelet transform is used for feature extraction from half cycle of post-fa...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • IEEE transactions on neural networks

دوره 4 6  شماره 

صفحات  -

تاریخ انتشار 1993